Table of Contents

Project Description __ 3
Methods __ 3
Results ___ 4

Appendix 1. Data Collection Protocol
Appendix 2. Prioritization Rating Schemes
Appendix 3. Site Rating Spreadsheets for Riparian Shade and Fish Habitat
Appendix 4. Maps
Project Description:
The Salmon River Riparian Assessment Project took place between 2006-2008 with the intention of assessing the riparian corridor for shade deficient sites in order to plan and implement future riparian vegetation restoration efforts on the Salmon River and its tributaries.

The Salmon River watershed is considered to be temperature impaired and subject to regulation by Section 303(d) of the Clean Water Act, as a result of excessive summertime stream temperatures. According to the Salmon River Watershed Total Maximum Daily Load for Temperature (TMDL), an increase in stream shade from current vegetation conditions to more natural and mature vegetation conditions would lead to improved stream temperatures. The TMDL requires that the Salmon River be managed for a definitive trend of increasing vegetation cover and increasing vegetation height within the riparian zones.

The primary adverse impacts associated with elevated temperatures in the Salmon River pertain to the anadromous salmonid fishery. Anadromous fish rely on both ocean and freshwater habitat for various life stages. The water quality present in the Klamath River basin, including the Salmon River and its tributaries, are not fully supportive of anadromous salmonid species, contributing to severe population declines. Juvenile Coho salmon, Chinook salmon and Steelhead, as well as migrating and holding adults, are vulnerable to increased water temperatures associated with loss of riparian cover and pool infilling. The riparian corridor in the Salmon River has been impacted by debris torrents, intense fire, extensive hydraulic placer mining, roads, and clearing for various purposes. Riparian vegetation has been lost, and stream channels destabilized. Restoration of riparian areas in order to increase shade will ideally result in cooler water temperatures and therefore increase the health of the anadromous fisheries.

Methods:

The assessment began by reviewing all applicable background data in order to identify and map all potentially shade deficient sites on the Salmon River. This review of background data included the following steps:

1. Scan and review aerial photos from 1944, 1955, 1964, 1965, and newer to determine where there were areas that were vegetated (after the hydraulic mining era) that are not now. Areas to be looked at include the mainstems (north fork, south fork and mainstem) and the lower reaches of major tributaries. Areas of special interest are sections of the river or tributaries that have abandoned hydraulic mines or tailing piles on them. We obtained hydraulic mines and abandoned mines map coverages from National Geographic TOPO, in order to help identify these sites.

2. Review existing water temperature data to determine if there are sections of the river that seem to be heating up more than others.

3. Review riparian areas that have been planted (from rr_plant polygon coverage)

Sites were identified based on the above information and mapped for field assessment. A protocol for field assessment was then developed in coordination with the US Forest Service, the North Coast
Regional Water Quality Control Board, and the Karuk Tribe. Field Crews conducted on-the-ground assessments of each site. Since the goal of the assessment was primarily to identify sites that could provide shade to the river, sites were only surveyed \(\sim 200 \) feet back from the water’s edge. Solar pathfinder readings were taken in the middle of the river channel at each site.

The following data was collected:

1. Using Trimble GPS Data Logger, collect site data – Appendix 1 (Aspect, Slope, Vegetation type, cover, soil type, ...)
2. GPS the entire devegetated site (map out refugia areas and tailing piles separately), and complete site sketches
3. Establish photo points in each area
4. Determine soil type and depth using a penetrometer
5. Use solar pathfinders to determine the potential shading effect and area if mature vegetation were present
6. Establish a potential species composition list for each area (identify native riparian plants and/or hardwoods and conifers that will be appropriate for each site)
7. Determine potential planting project techniques for site and determine type and magnitude of project (i.e., plant and leave site, site needs development and maintenance – consider access to the site – is planting feasible, etc.)

After field assessment was completed, a multi-factor prioritization of sites was done. The following factors guided the prioritization:

1. Tailing Pile recovery projects on mainstems and tributaries
2. Revegetation of other vegetation impaired areas
3. Refugia areas that could be vegetated to increase shading and cover for anadromous fish species

Sites were prioritized based on two different primary goals – their potential to increase riparian shading, and their potential to create high quality fish habitat. Each site was given 2 different priority ratings based on the different rating criteria for each goal. The shade and fish habitat rating schemes are attached in Appendix 2.

Results:
154 total sites were surveyed on the Mainstem, North Fork and South Fork Salmon. 44 of those were rated high priority for shade improvement, and 40 were rated high priority for fish habitat based on the rating schemes in Appendix 2. Of those, 15 sites rated high priority for both shade and fish habitat. See Appendix 3 for high priority site lists, and their attributes.

The highest density of high priority sites occurred in 3 reaches of the river. We therefore consider the North Fork between Red Bank and Sawyers Bar, the lower South Fork between Indian Crossing and Negro Creek, and the upper South Fork at Petersburg as the highest priority river reaches to focus large scale restoration projects on.
FIELD EQUIPMENT LIST:
- GPS (check batteries and cables)
- Solar Pathfinder with Tripod and Case
- Blank pathfinder cards (20)
- Grease pencil, two colors (and refills)
- Dry bag (for river crossing with GPS)
- Maps
- Clinometer
- Penetrometer
- Thermometer
- Compass
- Camera
- Field notebook
- Flagging (dark blue)
- Noxious weed flagging (to flag noxious weed sites)
- Noxious weed book (to identify noxious weed species)
- Sharpie(s)
- Pencil(s) for notebook
- Daypack or Field vest
- Boots
- Water
- Lunch
- Sunscreen
- Appropriate clothing

Data Dictionary

SURVEY AREA

Watershed Name: "Salmon River" default

Observers: abbreviated names of surveyors, 30 characters

Site Name, text, 15: Each surveyed area should be given a unique name. For example, a site on the North Fork Salmon River might be called NF01.

NOTE: **A catalog of all used names will be kept in the Solar Pathfinder case.**

Location, text, 100: Use this field if surveyed area is near some known landmark. For example, a site near the Galia Mine might have ‘Galia’ as a location.

Date: automatic

Quad Name, text, 30: lookup quad name before going into the field, or make sure that it is on your field map.
Stream Name: text, 25: on map

Stream Class: Select from List
"Perennial" (default): a stream that flows year round on an average year
"Intermittent": a stream that flows part of the time because of a connection with groundwater or because of seasonal snow melt
"Ephemeral": a watercourse generally without a well-defined channel which flows only in response to rainfall or snowmelt

Stream Gradient, numeric: Measure with clinometer, report as %

Fluvial Deposit Type: Select from List
"Bar": River Bar;
"Terrace": an accumulation of river deposits along the sides of a river valley which were deposited when river levels were higher, i.e. old floodplain or bar through which the river has cut a new, deeper channel.
"Floodplain": land next to a stream or river that is flooded during high-water events
"Fan": deposits from a stream that form gently sloping fan-shaped sediments, often seen at the base of a hill or gorge where the gradient and thus velocity of water decrease
"Landslide Deposit": deposit created by the downslope movement of rock and soil under the influence of gravity, and precipitation
"Other"

Geomorphic Valley: Select from List
“BR Control”: stream channel controlled by bedrock, stream can not move freely or change course due to steep valley walls.
“Alluvial”: channel can not move freely or change course, but controlled by alluvial deposits instead of bedrock.
“Braided”: stream form consisting of one or more channels separated by bars

Sub-ecosystem Type: Select from List
Note: Mesoriparian habitats are usually associated with perennial or intermittent watercourses or shallow ground water. Xeroriparian habitat is supported by intermittent or ephemeral stream flows that increase the amount of water available to plants beyond that available by direct rainfall. Xeroriparian habitats commonly contain the same plant communities as the adjacent upland vegetation, but have larger plants and denser growth due to the availability of water.

History of Deposit: Select from List

Refugia: Yes or No. Answer YES only if there are obvious refugia present. An obvious refugium would likely be a tributary with COOL water and a pool.

River Mile: numeric – should appear on your field map
Slope: record clinometer reading for average site slope

Aspect: Select from List – average aspect of the site being surveyed

Flood Freq: Select from List

Scoured?: Select from List; default is ‘no’. Answer YES only if site appears to be defined by scour or if entire site is scoured

Distance from Bank Full: in Feet; average distance of the site edge from bank of stream or river

Max Dist from BF: in Feet

Size Class Canopy: Size class of the tallest trees on the site (NOT shrubs or brush); Select from List

Soil Type: Select from List

Soil Depth: in Feet

Soil Cover %: Select from List

Depth to Water Table: for our purposes measure vertical depth to stream channel

Plantability: Select from List

Drainage: Select from List

Site Productivity: Select from List. Remember: this field refers to the potential of a site.

Slope Stability: Select from List

Depth to Hardpan: Select from List

Site Prep: Select from List

Planting Techniques: Select from List

Tree Name: Select from List

Tree Cover %: Select from List

Total Tree Cover %: Select from List

Shrub Cover %: Select from List
Forbs Cover %: Select from List
Grass Cover %: Select from List
Noxious Weed: Select from List
Noxious Weed Cover %: Select from List
Maintenance: Select from List
Maintenance 2: Select from List, default is NONE

Accessible: Select from List
• Yes: There is a road going to the site that can be driven and is adequate for bringing in machinery.
• No: There is no road – site is accessible by foot only.
• Crossing: Site is on opposite side of river, but there is a road and crossing.
• Needs Work: There is a road, but it needs work to be accessible by machinery.

Penetrometer: Select from List. RED = unacceptable, GREEN = acceptable, YELLOW = marginal

Current Status: Select from List

Priority: Select from List (High means this will shade a good stretch of stream)

In Recovery: Select from List

Other Restoration Potential: Text; Example: existing trees need water

PHOTO POINT
Be sure to flag and label the location of the photo points

Location, text, 100: Use this field if surveyed area is near some known landmark. For example, a site near the Galia Mine might have ‘Galia’ as a location.

Site Name, text, 15: Each surveyed area should be given a unique name. For example, a site on the North Fork Salmon River might be called NF01. This site name should be the same as the site name used for the survey area.

Photo Pt #, text, 2: Number each photo point at each site (most sites will only have 1 photo point).

Picture # North, text, 3: This is the picture number from the camera for the photo taken pointing North (0°) from the photo point.

Picture # West, text, 30: This is the picture number from the camera for the photo taken pointing West (270°) from the photo point.

Picture # South, text, 30: This is the picture number from the camera for the photo taken pointing South (180°) from the photo point.

Picture # East, text, 30: This is the picture number from the camera for the photo taken pointing East (90°) from the photo point.

Notes, text, 30
Date, date, auto
Time, time, auto, 24

POINT OF INTEREST
(add a point feature for any points of interest that are present on the site)

Notes, text, 100

REFUGIA
(add a point feature if any refugia are present on the site)

Notes, text, 100

SP_POINT
(add a point feature for each Solar Pathfinder location at each site)

SITE NAME: This is the same site name as for the survey area

SP_POINT #: This is for sites with more than one Solar Pathfinder Location. Number them as 1, 2, 3, etc.

PICTURE NUMBER: This is the picture number from the camera for the photo of the solar pathfinder.

NOTES, text, 100
Fish – Riparian Assessment Rating Criteria

Fluvial Deposit Type: Bar = 3; Floodplain = 2; Other, Landslide or Terrace = 0
Geomorphic Type: Braided = 10; Entrenched = 3; Alluvial = 2; Bedrock Control = 0
Sub-ecosystem Type: aquatic = 3; mesoriparian = 2; xeroriparian and upland = 0
History of Deposit: Mining = 3; Flood = 1; Landslide and other = 0
Refugia: Yes = 10; No = 0
Slope: 0-10 = 2, over 10 = 0
Aspect: North = 3; East and West = 2; South = 0
Flood Frequency: Never or Every 10 or 100 Years = 2; Every 2-5 years = 1; Annually = 0
Scoured: No = 2; Yes = 0
Plantability: High = 3; Medium = 2; Low = 0
Priority: High = 3; Medium = 2; Low = 0
Soil Cover: 0-40% = 0; 41-100% = 2
Shade – Riparian Assessment Rating Criteria

Fluvial Deposit Type: Terrace = 3; Bar = 2; Floodplain = 1; Other, Landslide or Terrace = 0

Geomorphic Type: Entrenched = 3; Alluvial = 2; Braided = 1; Bedrock Control = 0

Sub-ecosystem Type: Not Rated

History of Deposit: Mining = 3; Flood = 1; Landslide and other = 0

Refugia: Yes = 3; No = 0

Slope: 0-56 = 2; over 56 = 0

Aspect: North = 3; East and West = 2; South = 0

Flood Frequency: Never or Every 10 or 100 Years = 2; Every 10 Yrs = 1; Every 2-5 years and Annually = 0

Scoured: No = 1; Yes = 0

Plantability: High = 3; Medium = 2; Low = 0

Priority: High = 3; Medium = 2; Low = 0

Soil Cover: 0-40% = 0; 41-100% = 2
<p>| Geomorphic Type | Size Class | Soil Type | NF22 NORTH FORK 8/16/2006 SAWYERS BAR NF | Perennial 2 Bar Alluvial mesoriparian Flood | Yes | 11.0 | 7 East | Every 10 years | No | 5 | 0-5% | 51-60% | 6-10% | 0-5% | None | 0% | None | 0% | None | 0% | None | Gravity System Mulching | Yes Acceptable Somewhat Vegetated High Medium |
|-----------------|------------|-----------|--|---|-----|------|--------|--------------|----|---|--------|--------|------|------|-----|---|------|----|------|----------|---|
| SF18 WINDY BAR 9/12/2006 YOUNGS PEAK SF | Perennial 1 Bar Braided xeroriparian Flood | Yes | 4.0 | 0 North | Every 100 years | No | 0 | 100 | 0 | 10 | Low | High n/a ROAD RUNS THRU HIGH ACTIVITY | 9/12/2006 11:22:13am | 0.599 | 1208.375 | 2 | 3 | 10 | 0 | 1 | 10 | 2 | 3 | 2 | 2 | 3 | 2 | 42 | |
| Site Prep Planting Technique Tree Name | JCT 7/17/2006 TANNERS RUSSIAN | Perennial 4 Bar Alluvial mesoriparian Flood | Yes | 0.5 | 6 North | Every 100 years | Yes | 0 | 100 | 0 | 10 | Low | High SEE NOTEBOOK. EXEMPLARY REFUGIA AREA | 7/17/2006 03:53:07pm | 0.000 | 68.474 | 2 | 3 | 2 | 2 | 1 | 10 | 2 | 3 | 2 | 0 | 0 | 0 | 27 | |
| NF 12 JACKASS 7/27/2006 SAWYERS BAR NF | Perennial 1 Bar Alluvial mesoriparian Mining | Yes | 13.0 | 20 North | Never | No | 0 | 10 | 0 | 10 | Large | High n/a SITE VARYS BAR TAILINGS POND FLAT TO STEEP | 7/27/2006 09:59:26am | 4.040 | 2941.463 | 2 | 3 | 2 | 2 | 3 | 10 | 0 | 3 | 2 | 2 | 0 | 2 | 31 | |
| Plantability Drainage | 9/13/2006 03:20:06pm | 0.972 | 1263.711 | 2 | 0 | 2 | 0 | 3 | 10 | 2 | 2 | 2 | 2 | 2 | 0 | 29 | |
| Maintenance Maintenance2 Accessible Penetrometer Current Status Priority | 8/30/2006 11:15:56am | 6.073 | 3739.701 | 2 | 3 | 2 | 2 | 1 | 0 | 2 | 3 | 2 | 2 | 3 | 2 | 26 | |
| NF23 NORTH FORK 8/16/2006 SAWYERS BAR LNF | Perennial 0 Bar Alluvial mesoriparian Flood | Yes | 11.0 | 8 West | Every 10 years | Yes | 0 | 10 | 0 | 10 | Low | Medium |
| Indian creek sf 10/20/2006 YOUNGS PEAK SF | Perennial 1 Terrace Alluvial xeroriparian Mining | Yes | 0.0 | 15 West | Every 100 years | No | 0 | 100 | 0 | 10 | Large | High n/a | 10/20/2006 10:49:35am | 1.026 | 1838.178 | 2 | 0 | 2 | 0 | 3 | 10 | 0 | 2 | 2 | 2 | 3 | 2 | 28 | |
| Spotted Knapweed | EF2 MOUTH OF TAYLOR CR 2/14/2007 TAYLOR CR | Perennial 3 Bar Alluvial mesoriparian Flood | Yes | 0.0 | 10 West | Every 2-5 years | No | 0 | 10 | 0 | 10 | Low | High 2/14/2007 02:23:26pm | 0.012 | 106.149 | 2 | 3 | 2 | 2 | 1 | 10 | 2 | 2 | 1 | 2 | 2 | 0 | 29 | |
| sf29 mouth of plumber/refugia 9/14/2006 | CECILVILLE SF | Perennial 1 Bar Alluvial aquatic Flood | Yes | 13.2 | 7 East | Annually | Yes | 0 | 100 | 0 | 10 | Low | Medium | 9/13/2006 03:20:06pm | 0.972 | 1263.711 | 2 | 0 | 2 | 0 | 3 | 10 | 2 | 2 | 2 | 2 | 2 | 0 | 29 | |
| SF30 bar in bend blw lwr plummer rd 9/13/2006 | CECILVILLE SF | Perennial 1 Terrace Alluvial xeroriparian Mining | Yes | 12.8 | 1 West | Every 2-5 years | No | 0 | 100 | 0 | 10 | Low | Medium | 7/28/2006 03:43:09pm | 1.008 | 1242.622 | 2 | 3 | 2 | 2 | 1 | 10 | 2 | 3 | 1 | 0 | 0 | 0 | 38 | |
| MS02 terrace across frm brazilfield 9/27/2006 | FORKS MS | Perennial 1 Terrace Braided xeroriparian Flood | No | 16.2 | 8 North | Every 2-5 years | No | 0 | 100 | 0 | 10 | Low | Medium | 9/27/2006 12:22:19pm | 1.177 | 1881.906 | 2 | 3 | 2 | 2 | 1 | 10 | 2 | 3 | 1 | 0 | 0 | 0 | 26 | |
| NF 24 CRONAN GULCH 8/17/2006 SAWYERS BAR NF | Perennial 1 Bar Alluvial aquatic Flood | Yes | 9.5 | 2 South | Annually | No | 0 | 0 | 100 | 0 | 10 | Low | Medium | 7/28/2006 03:43:09pm | 1.008 | 1242.622 | 2 | 3 | 2 | 2 | 1 | 10 | 2 | 3 | 1 | 0 | 0 | 0 | 38 | |
| NF38 WINDLER 9/6/2006 SAWYERS BAR NF | Bedrock Control mesoriparian Flood | Yes | 0.0 | 0 North | Every 100 years | No | 0 | 0 | 100 | 0 | 10 | Low | n/a | 9/6/2006 09:35:04am | 0.006 | 1081.352 | 2 | 0 | 0 | 2 | 1 | 10 | 2 | 3 | 2 | 2 | 2 | 0 | 26 | |
| 9/27/2006 12:22:19pm | 1.177 | 1881.906 | 2 | 3 | 2 | 2 | 1 | 10 | 2 | 3 | 1 | 0 | 0 | 0 | 26 | |
| MS42 ABOVE HOUGIES HOLE 10/26/2006 SOMES BAR MS | Perennial 1 Bar Alluvial mesoriparian Flood | Yes | 1.0 | 15 North | Every 2-5 years | No | 0 | 0 | 100 | 0 | 10 | Low | n/a | 10/26/2006 11:46:22am | 1.033 | 1738.216 | 2 | 3 | 2 | 2 | 1 | 10 | 0 | 3 | 1 | 2 | 3 | 2 | 33 | |
| 10/26/2006 11:46:22am | 1.033 | 1738.216 | 2 | 3 | 2 | 2 | 1 | 10 | 0 | 3 | 1 | 2 | 3 | 2 | 33 | |
| 9/20/2006 03:19:16pm | 0.001 | 42.995 | 2 | 2 | 2 | 3 | 1 | 10 | 0 | 3 | 0 | 2 | 0 | 2 | 27 | |
| 9/20/2006 03:19:16pm | 0.001 | 42.995 | 2 | 2 | 2 | 3 | 1 | 10 | 0 | 3 | 0 | 2 | 0 | 2 | 27 | |</p>
<table>
<thead>
<tr>
<th>Geomorphic Type</th>
<th>WINDY BAR 9/12/2006</th>
<th>YOUNGS PEAK SF</th>
<th>Perennial</th>
<th>1 Bar</th>
<th>Braided</th>
<th>xeroriparian</th>
<th>Flood</th>
<th>Yes</th>
<th>4.0</th>
<th>0</th>
<th>North</th>
<th>Every 100 years</th>
<th>No</th>
<th>0</th>
<th>100 ...</th>
<th>Yes</th>
<th>N/A</th>
<th>Somewhat Vegetated</th>
<th>Medium</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELOW PETERSBURG</td>
<td>2/7/2007</td>
<td></td>
<td>Perennial</td>
<td>3 Terrace</td>
<td>Alluvial</td>
<td>xeroriparian</td>
<td>Mining</td>
<td>No</td>
<td>0.3</td>
<td>3</td>
<td>North</td>
<td>Every 100 years</td>
<td>No</td>
<td>30</td>
<td>40 Saplings</td>
<td>Sand</td>
<td>15</td>
<td>81-90%</td>
<td>18...</td>
<td>21%</td>
</tr>
<tr>
<td>7/18/2006</td>
<td></td>
</tr>
<tr>
<td>9/21/2006</td>
<td></td>
</tr>
<tr>
<td>NORTH FORK</td>
<td>8/16/2006</td>
<td>SAWYERS BAR LNF</td>
<td>Perennial</td>
<td>0 Bar</td>
<td>Alluvial</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>Yes</td>
<td>11.0</td>
<td>8</td>
<td>West</td>
<td>Every 10 years</td>
<td>Yes</td>
<td>0</td>
<td>0 ...</td>
<td></td>
<td></td>
<td>0-5%</td>
<td>0-5%</td>
<td>0-5%</td>
</tr>
<tr>
<td>SF Perennial 2</td>
<td>Bar</td>
<td>Alluvial</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>22.4</td>
<td>1 North</td>
<td>Every 100 years</td>
<td>No</td>
<td>15</td>
<td>80 Medium Sand</td>
<td>5 10 Medium Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 3</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>11.8</td>
<td>2 West</td>
<td>Every 100 years</td>
<td>No</td>
<td>3</td>
<td>15</td>
<td>Medium Pole Loam</td>
<td>2 31-40% Medium 15yr old p.pine upstrm side - eroded gully thru site</td>
<td>9/21/2006 10:41:03pm</td>
<td>2 3 2 0 3 0 2 3 3 1 2 2 3.55</td>
<td>20</td>
<td>3.55</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWYERS BAR NF</td>
<td>Perennial 1 Bar</td>
<td>Alluvial mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>12.7</td>
<td>11 West</td>
<td>Every 100 years</td>
<td>No</td>
<td>5</td>
<td>80</td>
<td>High</td>
<td>Medium</td>
<td>8/15/2006 02:21:57pm</td>
<td>2 2 2 0 1 0 2 3 1 1 2 2 6.90</td>
<td>22</td>
<td>6.90</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 2</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>19.3</td>
<td>2 South</td>
<td>Every 100 years</td>
<td>No</td>
<td>20</td>
<td>40</td>
<td>Medium Loam</td>
<td>5 91-100% 0-5% 0--5% 0-5% 0-5%</td>
<td>11/2/2006 02:47:35pm</td>
<td>2 2 0 0 1 0 2 3 3 1 3 2 4.69</td>
<td>25</td>
<td>4.69</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 3</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>Yes</td>
<td>11.0</td>
<td>7 East</td>
<td>Every 10 years</td>
<td>No</td>
<td>5</td>
<td>80</td>
<td>High</td>
<td>Medium</td>
<td>8/15/2006 02:21:57pm</td>
<td>2 2 2 0 1 0 2 3 1 1 2 2 6.90</td>
<td>22</td>
<td>6.90</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 2</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>22.0</td>
<td>3 East</td>
<td>Every 100 years</td>
<td>No</td>
<td>10</td>
<td>130</td>
<td>Medium Silt</td>
<td>2 31-30% 21-30% 41-50% 21-30%</td>
<td>9/21/2006 02:16:31pm</td>
<td>2 3 0 0 3 0 2 3 3 1 2 2 4.78</td>
<td>21</td>
<td>4.78</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 2</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>2.0</td>
<td>5 North</td>
<td>Every 100 years</td>
<td>No</td>
<td>5</td>
<td>100</td>
<td>Medium Sand</td>
<td>5 91-100% 0-5% 0--5% 0-5% 0-5%</td>
<td>11/15/2006 03:15:16pm</td>
<td>2 2 2 0 1 0 2 3 1 1 3 2 5.41</td>
<td>25</td>
<td>5.41</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 2</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>11.8</td>
<td>2 West</td>
<td>Every 100 years</td>
<td>No</td>
<td>20</td>
<td>40</td>
<td>Medium Loam</td>
<td>5 91-100% 0-5% 0--5% 0-5% 0-5%</td>
<td>11/2/2006 02:47:35pm</td>
<td>2 2 0 0 1 0 2 3 3 1 3 2 4.69</td>
<td>25</td>
<td>4.69</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 2</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>19.3</td>
<td>2 South</td>
<td>Every 100 years</td>
<td>No</td>
<td>20</td>
<td>40</td>
<td>Medium Loam</td>
<td>5 91-100% 0-5% 0--5% 0-5% 0-5%</td>
<td>11/2/2006 02:47:35pm</td>
<td>2 2 0 0 1 0 2 3 3 1 3 2 4.69</td>
<td>25</td>
<td>4.69</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Perennial 2</td>
<td>Terrace Bedrock</td>
<td>mesoriparian</td>
<td>Flood</td>
<td>No</td>
<td>22.0</td>
<td>3 East</td>
<td>Every 100 years</td>
<td>No</td>
<td>10</td>
<td>130</td>
<td>Medium Silt</td>
<td>2 31-30% 21-30% 41-50% 21-30%</td>
<td>9/21/2006 02:16:31pm</td>
<td>2 3 0 0 3 0 2 3 3 1 2 2 4.78</td>
<td>21</td>
<td>4.78</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Riparian Assessment: Upper North Fork Salmon River

Legend
- Mile_Post
- towns
- RA_Shrub_High
- RA_Fish_High
- RA_Fish_other
- hydraulic mines
- County
- FS System
- Private
- FS Decom
- FS NS Decom
- FS NS
- FS Other
- Main Streams
- Streams
- High Priority Reaches
- Private Parcels
- Watershed Boundary
- Wilderness
Riparian Assessment: Upper South Fork Salmon River